Adaptive parallelism mapping in dynamic environments using machine learning

نویسنده

  • Murali Krishna Emani
چکیده

Modern day hardware platforms are parallel and diverse, ranging from mobiles to data centers. Mainstream parallel applications execute in the same system competing for resources. This resource contention may lead to drastic degradation in a program’s performance. In addition, the execution environment composed of workloads and hardware resources, is dynamic and unpredictable. Efficient matching of program parallelism to machine parallelism under uncertainity is hard. The mapping policies that determine the optimal allocation of work to threads should anticipate these variations. This thesis proposes solutions to the mapping of parallel programs in dynamic environments. It employs predictive modelling techniques to determine the best degree of parallelism. Firstly, this thesis proposes a machine learning-based model to determine the optimal thread number for a target program co-executing with varying workloads. For this purpose, this offline trained model uses static code features and dynamic runtime information as input. Next, this thesis proposes a novel solution to monitor the proposed offline model and adjust its decisions in response to the environment changes. It develops a second predictive model for determining how the future environment should be, if the current thread prediction was optimal. Depending on how close this prediction was to the actual environment, the predicted thread numbers are adjusted. Furthermore, considering the multitude of potential execution scenarios where no single policy is best suited in all cases, this work proposes an approach based on the idea of mixture of experts. It considers a number of offline experts or mapping policies, each specialized for a given scenario, and learns online the best expert that is optimal for the current execution. When evaluated on highly dynamic executions, these solutions are proven to surpass default, state-of-art adaptive and analytic approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism

This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...

متن کامل

Dust source mapping using satellite imagery and machine learning models

Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...

متن کامل

Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments

Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...

متن کامل

Convergence of Indirect Adaptive Asynchronous Value Iteration Algorithms

Reinforcement Learning methods based on approximating dynamic programming (DP) are receiving increased attention due to their utility in forming reactive control policies for systems embedded in dynamic environments. Environments are usually modeled as controlled Markov processes, but when the environment model is not known a priori, adaptive methods are necessary. Adaptive control methods are ...

متن کامل

Motivated Learning from Interesting Events: Adaptive, Multitask Learning Agents for Complex Environments

This paper presents a model of motivation in learning agents to achieve adaptive, multi-task learning in complex, dynamic environments. Previously, computational models of motivation have been considered as speed-up or attention focus mechanisms for planning and reinforcement learning systems, however these different models do not provide a unified approach to the development or evaluation of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015